Koelsch, S. (2009). A Neuroscientific Perspective on Music Therapy. Annals of the New York Academy of Sciences, 1169(1), 374–384. https://doi.org/10.1111/j.1749-6632.2009.04592.x
Serin, A., Hageman, N. S., & Kade, E. (2018). The Therapeutic Effect of Bilateral Alternating Stimulation Tactile Form Technology on the Stress Response. Journal of Biotechnology and Biomedical Science, 1(2), 42–47. https://doi.org/10.14302/issn.2576-6694.jbbs-18-1887
Hautus, M. J., Macmillan, N. A., & Creelman, C. D. (2021). Detection Theory: A User’s Guide (3rd ed.). Routledge. https://doi.org/10.4324/9781003203636
Palomäki, K. J., Tiitinen, H., Mäkinen, V., May, P. J. C., & Alku, P. (2005). Spatial processing in human auditory cortex: The effects of 3D, ITD, and ILD stimulation techniques. Cognitive Brain Research, 24(3), 364–379. https://doi.org/10.1016/j.cogbrainres.2005.02.013
Jääskeläinen, I. P., Sams, M., Glerean, E., & Ahveninen, J. (2021). Movies and narratives as naturalistic stimuli in neuroimaging. NeuroImage, 224, 117445. https://doi.org/10.1016/j.neuroimage.2020.117445
Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., Fyer, A., Szeszko, P. R., & Bilder, R. M. (2002). Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study. NeuroImage, 15(2), 396–406. https://doi.org/10.1006/nimg.2001.0988
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: an MEG study. Nature Neuroscience, 4(5), 540–545. https://doi.org/10.1038/87502
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170–180. https://doi.org/10.1038/nrn3666
Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., & Friederici, A. D. (2004). Music, language and meaning: brain signatures of semantic processing. Nature Neuroscience, 7(3), 302–307. https://doi.org/10.1038/nn1197
King, C. D. (2014). A possible mechanism underlying conditioned pain modulation. Pain, 155(6), 1047–1048. https://doi.org/10.1016/j.pain.2014.02.011
Koelsch, S., Fritz, T., v. Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239–250. https://doi.org/10.1002/hbm.20180
Pehrs, C., Zaki, J., Schlochtermeier, L. H., Jacobs, A. M., Kuchinke, L., & Koelsch, S. (2015). The Temporal Pole Top-Down Modulates the Ventral Visual Stream During Social Cognition. Cerebral Cortex, bhv226. https://doi.org/10.1093/cercor/bhv226
Sihvonen, A., Siponkoski, S.-T., Martínez-Molina, N., Laitinen, S., Holma, M., Ahlfors, M., Kuusela, L., Pekkola, J., Koskinen, S., & Särkämö, T. (2022). Neurological Music Therapy Rebuilds Structural Connectome after Traumatic Brain Injury: Secondary Analysis from a Randomized Controlled Trial. Journal of Clinical Medicine, 11(8), 2184. https://doi.org/10.3390/jcm11082184
Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068–1076. https://doi.org/10.1016/j.neuroimage.2004.12.050
Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 44(2), 293–304. https://doi.org/10.1111/j.1469-8986.2007.00497.x
Sihvonen, A. J., Soinila, S., & Särkämö, T. (2022). Post-stroke enriched auditory environment induces structural connectome plasticity: secondary analysis from a randomized controlled trial. Brain Imaging and Behavior, 16(4), 1813–1822. https://doi.org/10.1007/s11682-022-00661-6
Sihvonen, A. J., Särkämö, T., Rodríguez-Fornells, A., Ripollés, P., Münte, T. F., & Soinila, S. (2019). Neural architectures of music – Insights from acquired amusia. Neuroscience & Biobehavioral Reviews, 107, 104–114. https://doi.org/10.1016/j.neubiorev.2019.08.023
Criscuolo, A., Bonetti, L., Särkämö, T., Kliuchko, M., & Brattico, E. (2019). On the Association Between Musical Training, Intelligence and Executive Functions in Adulthood. Frontiers in Psychology, 10, 1704. https://doi.org/10.3389/fpsyg.2019.01704
Sihvonen, A., & Särkämö, T. (2021). Clinical and Neural Predictors of Treatment Response to Music Listening Intervention after Stroke. Brain Sciences, 11(12), 1576. https://doi.org/10.3390/brainsci11121576
Seesjärvi, E., Särkämö, T., Vuoksimaa, E., Tervaniemi, M., Peretz, I., & Kaprio, J. (2016). The Nature and Nurture of Melody: A Twin Study of Musical Pitch and Rhythm Perception. Behavior Genetics, 46(4), 506–515. https://doi.org/10.1007/s10519-015-9774-y
Koelsch, S. (2011). Toward a Neural Basis of Music Perception – A Review and Updated Model. Frontier in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00110
Loui, P., & Guetta, R. E. (2019). Music and Attention, Executive Function, and Creativity. In M. H. Thaut & D. A. Hodges (Eds.), The Oxford Handbook of Music and the Brain (pp. 262–284). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198804123.013.12
Carrick, F. R., Pagnacco, G., Hankir, A., Abdulrahman, M., Zaman, R., Kalambaheti, E. R., Barton, D. A., Link, P. E., & Oggero, E. (2018). The Treatment of Autism Spectrum Disorder With Auditory Neurofeedback: A Randomized Placebo Controlled Trial Using the Mente Autism Device. Frontiers in Neurology, 9, 537. https://doi.org/10.3389/fneur.2018.00537
Lehne, M., Rohrmeier, M., & Koelsch, S. (2014). Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music. Social Cognitive and Affective Neuroscience, 9(10), 1515–1523. https://doi.org/10.1093/scan/nst141
Martínez-Molina, N., Siponkoski, S.-T., Pitkäniemi, A., Moisseinen, N., Kuusela, L., Pekkola, J., Laitinen, S., Särkämö, E.-R., Melkas, S., Kleber, B., Schlaug, G., Sihvonen, A., & Särkämö, T. (2022). Neuroanatomical correlates of speech and singing production in chronic post-stroke aphasia. Brain Communications, 4(1), fcac001. https://doi.org/10.1093/braincomms/fcac001
Brancatisano, O., Baird, A., & Thompson, W. F. (2020). Why is music therapeutic for neurological disorders? The Therapeutic Music Capacities Model. Neuroscience & Biobehavioral Reviews, 112, 600–615. https://doi.org/10.1016/j.neubiorev.2020.02.008
Burunat, I., Brattico, E., Hartmann, M., Vuust, P., Särkämö, T., & Toiviainen, P. (2018). Musical training predicts cerebello-hippocampal coupling during music listening. Psychomusicology: Music, Mind, and Brain, 28(3), 152–163. https://doi.org/10.1037/pmu0000215
Koelsch, S., Gunter, T. C., v. Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach Speaks: A Cortical “Language-Network” Serves the Processing of Music. NeuroImage, 17(2), 956–966. https://doi.org/10.1006/nimg.2002.1154
Pentikäinen, E., Kimppa, L., Makkonen, T., Putkonen, M., Pitkäniemi, A., Salakka, I., Paavilainen, P., Tervaniemi, M., & Särkämö, T. (2022). Benefits of choir singing on complex auditory encoding in the aging brain: An ERP study. Annals of the New York Academy of Sciences, 1514(1), 82–92. https://doi.org/10.1111/nyas.14789
Davis, J. H., & Vago, D. R. (2013). Can enlightenment be traced to specific neural correlates, cognition, or behavior? No, and (a qualified) Yes. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00870
Leo, V., Sihvonen, A. J., Linnavalli, T., Tervaniemi, M., Laine, M., Soinila, S., & Särkämö, T. (2019). Cognitive and neural mechanisms underlying the mnemonic effect of songs after stroke. NeuroImage: Clinical, 24, 101948. https://doi.org/10.1016/j.nicl.2019.101948
Kim, J., Palmisano, S., Luu, W., & Iwasaki, S. (2021). Effects of Linear Visual-Vestibular Conflict on Presence, Perceived Scene Stability and Cybersickness in the Oculus Go and Oculus Quest. Frontiers in Virtual Reality, 2, 582156. https://doi.org/10.3389/frvir.2021.582156
Herbelin, B., Salomon, R., Serino, A., & Blanke, O. (2015). 5. Neural Mechanisms of Bodily Self-Consciousness and the Experience of Presence in Virtual Reality. In A. Gaggioli, A. Ferscha, G. Riva, S. Dunne, & I. Viaud-Delmon, Human Computer Confluence (pp. 80–96). De Gruyter Open. https://doi.org/10.1515/9783110471137-005
Hume, K., & Ahtamad, M. (2013). Physiological responses to and subjective estimates of soundscape elements. Applied Soundscapes: Recent Advances in Soundscape Research, 74(2), 275–281. https://doi.org/10.1016/j.apacoust.2011.10.009
Kim, S.-G. (2022). On the encoding of natural music in computational models and human brains. Frontiers in Neuroscience, 16, 928841. https://doi.org/10.3389/fnins.2022.928841
Quon, R. J., Casey, M. A., Camp, E. J., Meisenhelter, S., Steimel, S. A., Song, Y., Testorf, M. E., Leslie, G. A., Bujarski, K. A., Ettinger, A. B., & Jobst, B. C. (2021). Musical components important for the Mozart K448 effect in epilepsy. Scientific Reports, 11(1), 16490. https://doi.org/10.1038/s41598-021-95922-7
Wilson, M. (2010). The re-tooled mind: how culture re-engineers cognition. Social Cognitive and Affective Neuroscience, 5(2–3), 180–187. https://doi.org/10.1093/scan/nsp054